title:
version:
date:

author:
organization:

e-mail:
homepage:

T-UN,
hd
i >

. SFB 632 ;°” %,

% mr) ANNIS *. o
° % “*u RS
BERY

+

User Guide — Version 2.2.1

(For the latest documentation see also:
https://korpling.german.hu-berlin.de/p/projects/annis/)

ANNIS User Guide
221
18 April 2012

Amir Zeldes

SFB 632 Information Structure / D1 Linguistic Database
Humboldt-Universitét zu Berlin & Universitat Potsdam
annis-admin@]ling.uni-potsdam.de
http://www.sfb632.uni-potsdam.de/d1/annis/

https://korpling.german.hu-berlin.de/p/projects/annis/
mailto:annis-admin@ling.uni-potsdam.de
http://www.sfb632.uni-potsdam.de/d1/annis/

Contents

L INEFOTUCTION ...ttt bbbttt ettt b b e 2
2 New Features iN VErSION 2.2.1......ccuoiiieiieieeie ettt 2
3 INSTAllING ANNISZ ...t e e eas 3
3.1 Installing a Local Version (ANNIS KicKStarter)ccccevevrverveieninniene e 3
3.2 Building and Installing an ANNIS SErVercccccovvieieeie i 3
4 Running QUEries IN ANNISZ ..o 6
4.1 The ANNIS2 INEITACEccveiieee e 6
4.2 Using the ANNIS2 QUEry BUIIUENccvviieieiie e 8
4.3 Searching for Word FOIMS.......c.ooviiiiiecic et 9
4.4 Searching for ANNOTATIONSc.eeviiiiiieie e 11
4.5 Searching using Regular EXPreSSIONS.........c.ccviieiieieeieseeseeiesee e eseesae e 12
4.6 SEArChING TOr TIEESeiii ettt enee s 13
4.7 Searching for Pointing Relations — Coreference and Dependencies 14
4.8 EXPOrting Search RESUILS.........ccoiiiiiiiiieieeece e 15
4.9 Complete LiSt Of OPErators.........cceivveiieiieiiesie e 18
5 Configuring VISUAIIZALIONSccoiuiiiiiiiiiieieeee e 20
5.1 Triggering Visualizations with the Resolver Tablecccccoevieviiiciiccec, 20
5.2 Visualizations with Software REqQUIrEMENTS...........cceriiiriiiniiececce e 24
5.3 Changing maximal context size and possible context Stepsccccvevverieenenne. 24
6 Converting Corpora for ANNIS using SaltNPepper..........ccccvvveieieneiere e 25

1 Introduction

ANNIS2 is an open source, browser-based search and visualization architecture for multi-
layer corpora. It can be used to search for complex graph structures of annotated nodes
and edges forming a variety of linguistic structures, such as constituent or dependency
syntax trees, coreference and parallel alignment edges, span annotations and associated
multi-modal data (audio/video). This guide provides an overview of the current ANNIS2
system, first steps for installing either a local instance or an ANNIS server with a demo
corpus, as well as tutorials for converting data for ANNIS and running queries with AQL
(ANNIS Query Language).

2 New Features in VVersion 2.2.1

Features:

- Subcorpus and document path for each hit can be shown in search result list

- Metadata coming from documents, subcorpora and top level corpora is sorted
separately in the metadata display

- New grid-tree visualizer for a span visualization of hierarchical structures (e.g.
topological fields in German; see Section 5.1)

- More intuitive search button position in GUI and other small GUI improvements

- Updated tutorial

— Faster import when large corpora are already in the system

Bugfixes:

- Support for IDK 7

- Fixed import bug which could disrupt queries of the sort >secedge m,n (see
https://bugs.launchpad.net/bugs/870108)

— Fixed bugs in some forms of query disjunction with |’

- Fixed resizing of visualizers in Chrome browsers

— Fixed escaping of characters in WEKA export

(For change logs of previous version see their respective distributions or user guides)

https://bugs.launchpad.net/bugs/870108

3 Installing ANNIS2

3.1 Installing a Local Version (ANNIS Kickstarter)

Local users who do not wish to make their corpora available online can install ANNIS
Kickstarter under most versions of Linux, Windows and Mac OS. To install Kickstarter
follow these steps:

1. Download and install PostgreSQL 8.4 for your operating system from
http://www.postgresql.org/download/ and make a note of the administrator
password you set during the installation. After installation, Postgres may
automatically launch the Postgres Stack Builder to download additional
components — you can safely skip this step and cancel the Stack Builder if you
wish. You may need to restart your OS if the Postgres installer tells you to.

2. Download and unzip Annis-Kickstarter-2.2.1-distribution.zip from the ANNIS
website.

3. Start AnnisKickstarter.bat if you’re using Windows or run the bash script
AnnisKickstarter.sh otherwise (this may take a few seconds the first time you run
Kickstarter). At this point your Firewall may try to block Kickstarter and offer
you to unblock it — do so and Kickstarter should start up.

Note: for most users it is a good idea to give Java more memory (if this is not
already the default). You can do this by editing the script AnnisKickstarter and
typing the following after the call to start java (before -splash:splashscreen.gif):

-Xss1024k -Xmx1024m

(To accelerate searches it is also possible to give the Postgres database more
memory, see the link in the next section below).

4. Once the program has started, if this is the first time you run Kickstarter, press
“Init Database” and supply your PostGres administrator password from step 1.

5. Download and unzip the pcc2 demo corpus from the ANNIS website.

6. Press “Import Corpus” and navigate to the directory containing the directory
pcc2_v2_relAnnis/. Select this directory (but do not go into it) and press OK.

7. Once import is complete, press “Launch Annis frontend” and login with the

username and password “test” to test the corpus (try selecting the pcc2 corpus,
typing pos="NN" in the AnnisQL box and clicking “Show Result”. See the
section “Running Queries in ANNIS2” in this guide for some more example
queries, or press the Tutorial button at the top left of the interface).

3.2 Building and Installing an ANNIS Server

The ANNIS server version can be installed on UNIX based server, or else under
Windows using Cygwin, the freely available UNIX emulator. To install the ANNIS
server:

http://www.postgresql.org/download/
http://launchpad.net/annis/2.2/2.2.1/+download/Annis-Kickstarter-2.2.1-distribution.zip
http://korpling.german.hu-berlin.de/~annis/downloads/sample_corpora/pcc2_relAnnis.zip
http://www.cygwin.com/

wmn

10.

Install a PostgreSQL server for your operating system from
http://www.postgresql.org/download/

Install a web server such as Tomcat or Jetty

Make sure you have JDK 6 and Maven 2 (or install them if you don’t)

If you’re using Cygwin and Windows you will also need to install the “patch”
program via the Cygwin package manager

Download and unzip Annis-2.2.1.zip, then run the following commands
(replacing the appropriate directories):

cd <unzipped source>/Annis-Service
mvn -DskipTests=true install

mvn -DskipTests=true assembly:assembly

tar xzvf target/annis-service-<version>-distribution.tar.gz -C <installation
directory>

Next initialize your ANNIS database (only the first time you use the system):
Set the environment variables (each time when starting up)

export ANNIS HOME=<installation directory>

export PATH=$PATH:SANNIS HOME/bin
Now you can import some corpora:

annis-admin.sh import path/to/corpusl path/to/corpus2 ...

Important: The above import-command calls other PostgreSQL database
commands. If you abort the import script with Ctrl+C, these SQL processes will
not be automatically terminated; instead they might keep hanging and prevent
access to the database. The same might happen if you close your shell before the
import script terminates, so you will want to prefix it with the "nohup*-command.
Now you can start the ANNIS service:

annis-service.sh start

To get the Annis front-end running, first compile it:

cd <unzipped source>

mvn -DskipTests=true install

If no error occurs the war-file will be available under

http://www.postgresql.org/download/
http://tomcat.apache.org/
http://www.mortbay.org/jetty/
http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/
http://launchpad.net/annis/2.2/2.2.1/+download/Annis-2.2.1.zip

<unzipped source>/Annis-web/target/Annis-web.war.

11. And configure your web server as described here:
https://korpling.german.hu-berlin.de/p/projects/annis/wiki/Tomcat

The latest instructions for compiling and installing the ANNIS Server can also be found
at: https://korpling.german.hu-berlin.de/p/projects/annis/wiki/Documentation

We also strongly recommend reconfiguring the Postgres server’s default settings as
described here:
https://korpling.german.hu-berlin.de/p/projects/annis/wiki/PostgreSQL

https://korpling.german.hu-berlin.de/p/projects/annis/wiki/Tomcat
https://korpling.german.hu-berlin.de/p/projects/annis/wiki/Documentation
https://korpling.german.hu-berlin.de/p/projects/annis/wiki/PostgreSQL

4 Running Queries in ANNIS2

4.1 The ANNIS2 Interface

ANMISE = | Tutorial

[SESPFEITONN = = = = - Ly 1=
ArisaL: tok & tok & #1 -=dep[func="0A"] #2 & Page 1015 b Bl @ Token Annotations = Show Citation URL Displaying Results 1 - 10 of 43
at="5"& #3 i #1 & node & #3
=secedge #4 | correction="correcting” | ;l
e
b | ® | | [7]] 00:00:13 -
Show Result | Query Builder History ~
Result: Valid Query i) wahrend 78 Prozent fiir Bush und vier Prozent fir Clinion aussprachen
weahrend 7§ Prozent sich fir Bush und vier Prozent fir Clinton aussprechen
KOUS CARD MM PRF APPR NE KOMCARD MM APPR NE WWFIN
" - - MAMeut 3ACEPl - ADcEdt - - MMMewt - AccSot 3PIPastind
lore Corpora -
= dependencies
[T rame « Texts Tokens
[FakeEssayLzv2_o 45 131511 i
] ONTONGTES_v1.5_small 4 8450
[sMULTRON_Banana z 3762 i
[] TueBa&_no_cye 287 TT04 ()
] =gnia 24 184 i
] bdtatian2.0 2031 11295 i
' wahrend 78 Prozent fir Bush und wier Prozert fir Clinton aussprachen
[0 peea 3 573 i
- = constituents
[pee2 2 :e () @
tigerl dep 1 azg i /'f\
" " CS
] tiger2 1971 838578 i I 4 1
' cJ coj <
) o)
I L < | 1 L h 1
cP sB oA MO sB MO HD
or RN @R
MK i AC K i INK Ag s
| I | I [I I I
wahrend " 78 [SlfeREIgl fiar Bush und wier Prozent fir Clinton
search || Export i/ Die Vase auf dem Tiscn ist grofer als die Vase
= animacy (grid)
Context Left: 0 - Select Displaysd Annotation Levels ~
Contest Right: | = mmaxref_type| inanim inanim
mmax:ref_type inanim H
Results per page: 10 v - :
tok Die Wase | auf dem st groler als | die Va
= coreference (discourse)
Show Resutt Higl WaSEValf| dem Tisch ist grofer als die Vase auf der Fensterbank . lch finde |, [Si8] sieht nicht so gut aus , weil der Tisch zu klsin istT

The ANNIS2 interface is comprised of several windows, the most important of which are
the search form (in the red box above left) and the results window (in the blue box above).

The Search Form =

The Search Form on the left of the interface window is | mse: ecsemdan |
available immediately after login. In the middle, the list of

currently available corpora is shown. Using the checkboxes St Reaut | Query Bukir | iy <
on the left of each corpus, it is possible to select which | s s

corpora should be searched in (hold down 'shift' to select

lore Corpora

multiple corpora simultaneously). If you cannot see a corpus | = ter- Ters | Tokens
that should be available to you, or else if the corpora list is | * mmmee & o 4
too cluttered, you may click on "more corpora” to open the e |
corpora window. You may then drag and drop the desired or | =« Fa———
unwanted corpora between the list and the window. T T B
tiger2 1971 BBASTE (i) T
Pressing the “&' button next to a corpus in the list will open | crwcir -
the corpus explorer window (see picture below), which :::*;’:p:‘f:;: . -

shows metadata for the entire corpus on the left and a list of
available annotations and example queries on the right.

6

Clicking on a query will copy it to the "AnnisQL" field at the top of the form. Pressing
the link icon will give you a citation link that can be used to access the query from any
browser. If the corpus contains hierarchical structures, such as dominance edges or
pointing relations, there will be separate segments on the right hand side of the corpus
explorer to show the available edge names and annotations together with example queries.

Meta Data for pcc2 *
meta data available annotations
Matme “alue node annokations =
annotation_description POS, lemma, morphology, name example (click to use gquery) ™ url
constituent and dependency
syrtax, information structure, Focus_newlnt Focuz_newlnf="nf-unzal" [=E
coreference, rhetorical structure
! Inf-Stat Inf-Stat="giv-active" =)
annotation_levels pos; lemima; morph; nf-
Stat: Focus_newnt;PR;MNP; Topic; Sert;| MP MP="P" L
[for dominance egdes), dep:func —
[for dependency poirting PP PP="PP" b

relgtions); anaphor_antecedent
[pointing relations)

full_niame Potsdam Commentary Corpus Topic: Topic="ah" a2
[sample of 2 documents)

Sent Sent="z" [

ambiguity ambiguity="not_amkig" [t
language GErman
anaphor_type anaphor_type="anaphar_nominal' o
sOUrce Project D1, SFB B32
URL link complex_ng complesx_np="no" [
version 20 dir_speech dir_speech="text_level" [_I
-
edge bypes +
edge annotations +

The "AnnisQL" field at the top of the form is used for inputting queries manually (see the
tutorials on the ANNIS Query Language). As soon as one or several corpora are selected
and a query is entered or modified, the query will be validated automatically and possible
errors in the query syntax will be commented on in the "Result” box below. When
modifying a query, a delay of two seconds ia activated before the query is re-sent to the
server for validation.

Once a valid query has been entered, pressing the "Show Result” button (or using the
shortcut ctrl+Enter) will retrieve the number of matching positions in the selected corpora
in the Result box and open the Result Window to display the first set of matches. Queries
from the current session are saved in the query history and can be accessed using the
button underneath the result field.

The context surrounding the matching expressions in the result list is determined by the
"context left" and "context right" options at the bottom of the search form, and can be set
to up to 10 tokens on each side, though some corpora allow longer spans, such as entire
texts, to be viewed using special discourse visualizations.

The Result Window

The result window shows search results in pages of 10 hits each by default (this can be
changed in the Search Form). The toolbar at the top of the window allows you to navigate
between these pages. The "Token Annotations" button on the toolbar allows you to toggle

the token based annotations, such as lemmas and parts-of-speech, on or off for you
convenience. The "Citation URL" button provides a hyperlink which you can e-mail or
cite, allowing others to reproduce your query.

der e eine fiurmie auf der Bank

der e ein furmie auf der Bank

ART HCIH ART [APPR ART {1
m.=g Masc - Mam.=g.Fem Mom.Sg Fem -- Dat.=gFem Dat.Sg.Fem

kiger:morph = Mom, S5g.Fem

The result list itself initially shows a
KWIC (key word in context)
concordance of matching positions
in the selected corpora, with the
matching region marked red and the
context in black on either side.
Token annotations are displayed in
gray under each token, and hovering
over them with the mouse will show
the annotation name and namespace.
More complex annotation levels can
be expanded, if available, by
clicking on the plus icon next to the
level's name, e.g. tiger and
exmaralda for the annotations in the
tree and grid views in the picture to
the right (circled in red).

L

@D

Komik

Select Displayed Annotation Levels =
Inf-Stat | idiom giv-inacitve SCC-Gen
HP P NP NP
PP
Sent =

4.2 Using the ANNIS2 Query Builder

To open the graphical query builder, click on the Query Builder button on the Search
Form (clicking the button again will close the Query Builder). On the left-hand side of
the toolbar at the top of the query builder canvas, you will see the Create Node button.
Use this button to define nodes to be searched for (tokens, non-terminal nodes or
annotations). Creating nodes and modifying them on the canvas will immediately update
the AnnisQL field in the Search Form with your query, though updating the query on the
Search Form will not create a new graph in the Query Builder.

Search Form

AnnisQL: at="5" & node & #1
=secadge[func="5B"] #2

Show Result @ Query Builder History | -

Result: 2861

In each node you create you may click on "Add" to specify an annotation value. The
annotation name can be typed in or selected from a drop down list. The "Op[erator]" field

in the middle allows you to choose between an exact match
(the '=" symbol) or wildcard search using Regular Expressions
(the '~' symbol). The annotation value is given on the right, Edge Add Clear X
and should NOT be surrounded by quotations (see the example Field op Value
below). It is also possible to specify multiple annotations TR v < T
applying to the same position by clicking on "Add" multiple

times. Clicking on "Clear" will delete the values in the node. | | 7% -
To search for word forms, simply leave the field name on the
left empty and type directly on the right under "Value". A node
with no data entered will match any node, that is an | roes

position
referenti

underspecified token or non-terminal node or annotation.

To specify the relationship between nodes, first click on

A Clar % the "Edge" button at the top left of one node, and then
= |» e click the "Dock™ button which becomes available on the
other nodes. An edge will connect the nodes with an
extra box from which operators may be selected (see

N below). For operators allowing additional labels (e.g. the
x dominance operator > allows edge labels to be specified),
> [egeriunc="c6') you may type directly into the edge's operator box, as in

N the example with a "func"” label in the image below. Note

that the node clicked on first (where the "Edge" button
1 |p e was clicked) will be the first node in the resulting quey,
’ i.e. if this is the first node it will dominate the second
node (#1 > #2) and not the other way around, as also

represented by the arrows along the edge.

4.3 Searching for Word Forms

To search for word forms in ANNIS2, simply select a corpus (in this example the small
pcc2 demo corpus) and enter a search string between double quotation marks, e.g.:

"statisch"

Note that the search is case sensitive, so it will not find cases of capitalized 'Statisch’, for
example at the beginning of a sentence. In order to find both options, you can either look
for one form OR the other using the pipe sign (|):

"statisch" | "Statisch"

or else you can use regular expressions, which must be surrounded by slashes (/) instead
of quotation marks:

/[Ss]tatisch/

To look for a sequence of multiple word forms, enter your search terms separated by &
and then specify that the relation between the elements is one of precedence, as signified
by the period (.) operator:

"so" & "statisch" & #1 . #2

The expression #1 . #2 signifies that the first element (""so") precedes the second element
("statisch™). For indirect precedence (where other tokens may stand between the search
terms), use the .* operator:

/[Ss]o/ & "statisch" & "wie"™ & #1 . #2 & #2 .* #3

The above query finds sequences beginning with either "So" or "'so", followed directly by
"statisch”, which must be followed either directly or indirectly (.*) by "wie". A range of
allowed distances can also be specified numerically as follows:

/[Ss]tatisch/ & "wie" & #1 .1,5 #2

Meaning the two words may appear at a distance of 1 to 5 tokens. The operator .* allows
a distance of up to 50 tokens by default, so searching with .1,50 is the same as using .*
instead. Greater distances (e.g. .1,100 for 'within 100 tokens’) should always be specified
explicitly.

Finally, we can add metadata restrictions to the query, which filter out documents not
matching our definitions. Metadata attributes must be preceded by the prefix meta:: and
may not be bound (i.e. they are not referred to as #1 etc. and the numbering of other
elements ignores their existence):

/[Ss]ltatisch/ & "wie" & #1 .1,5 #2 & meta::Genre="Sport"

To view metadata for a search result or for a corpus, press the "i" icon next to it in the
result window or in the search form respectively.

10

4.4 Searching for Annotations

Annotations may be searched for using an annotation name and value. The names of the
annotations vary from corpus to corpus, though many corpora contain part-of-speech and
lemma annotations with the names pos and lemma respectively (annotation names are
case sensitive). For example, to search for all forms of the German verb sein 'to be' in a
corpus with lemma annotation such as pcc2, simply select the pcc2 corpus and enter:

lemma="sein"

Negative searches are also possible using != instead of =. For negated tokens (word forms)
use the reserved attribute tok. For example:

lemma!="sein"
or.
tok!="ist"

Metadata can also be negated similarly:
lemma="sein" & meta::Genre!="Sport"

To only find finite forms of this verb in pcc2, use the part-of-speech (pos) annotation
concurrently, and specify that both the lemma and pos should apply to the same element:

lemma="sein" & pos="VAFIN" & #1 = #2

The expression #1 = #2 uses the span identity operator to specify that the first
annotation and the second annotation apply to exactly the same position in the corpus.
Annotations can also apply to longer spans than a single token: for example, in pcc2, the
annotation Inf-Stat signifies the information structure status of a discourse referent. This
annotation can also apply to phrases longer than one token. The following query finds
spans containing new discourse referents, not previously mentioned in the text:

exmaralda:Inf-Stat="new"

If the corpus contains no more than one annotation type named Inf-Stat, the optional
namespace (in this case exmaralda:) may be dropped; if there are multiple annotations
with the same name but different namespaces, dropping the namespace will find all of
those annotations. In order to view the span of tokens to which this annotation applies,
enter the and click on "Show Result", then open the exmaralda annotation level to view
the grid containing the span. Further operators can test the relationships between
potentially overlapping annotations in spans. For example, the operator _i_ examines
whether one annotation fully contains the span of another annotation (the i stands for
‘includes’):

Topic="ab" & Inf-Stat="new" & #1 i #2

11

This query finds aboutness topics (Topic="ab") containing information structurally new
discourse referents.

4.5 Searching using Regular Expressions

When searching for word forms and annotation values, it is possible to employ wildcards
as placeholders for a variety of characters, using Regular Expression syntax (see
http://www.regular-expressions.info/ for detailed information). To search for wildcards
use slashes instead of quotation marks to surround your search term. For example, you
can use the period (.) to replace any single character:

tok=/de./

This finds word forms such as "der”, "dem", "den" etc. It is also possible to make
characters optional by following them with a question mark (?). The following example
finds cases of "das" and "dass", since the second "s" is optional:

tok=/dass?/

It is also possible to specify an arbitrary number of repetitions, with an asterisk (*)
signifying zero or more occurrences and a plus (+) signifying at least one occurrence. For
example, the first query below finds "da", "das", and "dass" (since the asterisk means
zero or more times the preceding "'s"), while the second finds "das™ and "dass", since at

least one "'s" must be found:
tok=/das*/
tok=/das+/

It is possible to combine these operators with the period operator to mean any number of
occurrences of an arbitrary character. For example, the query below searches for pos
(part-of-speech) annotations that begin with "VA", corresponding to all forms of
auxiliary verbs. The string "VA" means that the result must begin with "VA", the period
stands for any character, and the asterisk means that ‘any character' can be repeated zero
or more time, as above.

pos=/VA.*/

This finds both finite verbs ("VAFIN™) and non-finite ones ("VAINF"). It is also possible
to search for explicit alternatives by either specifying characters in square brackets or
longer strings in round brackets separated by pipe signs. The first example below finds
either "dem" or "der" (i.e. "de" followed by either "m" or "r") while the second example
finds lemma annotations that are either "sein™ or "werden".

tok=/de[mr]/

12

http://www.regular-expressions.info/

lemma=/ (sein|werden) /

Finally, negative searches can be used as usual with the exclamation point, and regular
expressions can generally be used also in edge annotations. For example, if we search for
trees (see also Searching for Trees below) where a node dominates another node with
edges not containing an object, we can use a wildcard to rule out all edges labels
beginning with "O" for object:

cat="VP" & cat & #1 >[func!=/0.*/] #2

4.6 Searching for Trees

In corpora containing hierarchical structures, annotations such as syntax trees can be
searched for by defining terminal or none-terminal node annotations and their values. A
simple search for prepostional phrases in the small pcc2 demo corpus looks like this:

tiger:cat="PP"

If the corpus contains no more than one annotation called cat, the optional namespace, in
this case tiger:, may be dropped. This finds all PP nodes in the corpus. To find all PP
nodes directly dominating a proper name, a second element can be specified with the
appropriate part-of-speech (pos) value:

cat="PP" & pos="NE" & #1 > #2
The operator > signifies direct dominance, which must hold between the first and the

second element. Once the Result Window is shown you may open the "tiger" annotation
level to see the corresponding tree.

i hit =Einem Tor Zum 1.0 fir die Lkraine
' rmit zEin Tor zu 1:0 flir der Ukraine
AFPR PPOZAT P APPRART CARD AFPR ART ME
Dat Sg.Meut Dat Sg Mewt Dat SgMeut - -- AccSgFem Acc.zgFe
= tiger
®
i W2
Ma
B e m— -1
AC K K] MR
PR
— 1TWP——_
AL ME \MNR
—@—
AL INE ME
| | |
Mit seinem Tor zum 10 (ol BB

Note that since the context is set to a number of tokens left and right of the search term,
the tree for the whole sentence may not be retrieved. To do this, you may want to
specifically search for the sentence dominating the PP. To do so, specify the sentence in
another element and use the indirect dominance (>*) operator:

cat="S" & cat="PP" & pos="NE" & #1 >* #2 & #2 > #3

If the annotations in the corpus support it, you may also look for edge labels. Using the
following query will find all adjunct modifiers of a VP, dominated by the VP node
through an edge labeled MO. Since we do not know anything about the modifying node,
whether it is a non-terminal node or a token, we simply use the node element as a place
holder. This element can match any node or annotation in the graph:

cat="VP" & node & #1 >[tiger:func="MO"] #2

It is also possible to negate the label of the dominance edge as in the following query:
cat="VP" & node & #1 >[tiger:func!="MO"] #2

which finds all VPs dominating a node with a label other than MO.

4.7 Searching for Pointing Relations — Coreference and Dependencies

Pointing relations are used to express an arbitrary directed relationship between two
elements (terminals or non-terminals) without implying dominance or coverage
inheritance. For instance, in the pcc2 demo corpus, elements in the mmax: namespace
may point to each other to express coreference or anaphoric relations. The following
query searches for two np_form annotations, which specify for example whether a
nominal phrase is pronominal, definite or indefinite.

mmax:np form="pper" &
mmax:np_ form="defnp" &
#1 ->anaphor antecedent #2

Using the pointing relation operator -> with the type anaphor_antecedent, the first
np_form, which should be a personal pronoun (pper), is said to be the anaphor to its
antecedent, the second np_form, which is definite (defnp). To see a visualization of the
coreference relations, open the mmax annotation level in the example corpus. In the
image below, one of the matches for the above query is highlighted in red (die Seeburger
und einige GroR-Glienicker ... sie ‘the Seeburgers and some Grof3-Glienickers... they”).
Other discourse referents in the text (marked with an underline) may be clicked on,
causing coreferential chains containing them to be highlighted as well. Note that
discourse referents may overlap, leading to multiple underlines: Die Seeburger ‘the
Seeburgers’ is a shorter discourse referent overlapping with the larger one (‘the
Seeburgers and some GroR-Glienickers’), and each referent has its own underline.
Annotations of the coreference edges of each relation can be viewed by hovering of the
appropriate underline.

14

= mmax (discourse]
Steilpass Wunder gibkt es immer wieder ! BErst spielen die Dallgower Gemeindewertreter so statisch und wverzagt wie -
I

die deutzche Abwehmeihe der Fubkballkicker . Und danm kommt aus der Tiefe =alch ein fulminanter Steilpass |, won
dem man hafft , dass [die Sesburger oder Grok- Glienicker hftspieler ihn aufnehmen kdnnen . Bn Befreiungsschlag ist
ez allerdings nicht , weil &= worerst keine Gefahr firs [Dallgower Tor gab . [Die Sesburger und einige Grok-Glienicker

haben den Ball erst zunickgespiett und dann um so drangender wieder gefordert . Mun sollen sie zeigen |, wie sie die
Chance wenwerten . Bne Diskussion , wo kinftig die Traineddabine stehen =oll |, ware in der jetzigen Spielsituation
werheerend . Und eine Parallele zu den dedgtzchen Grotten-kickem gibt es immer noch . Agch wenn die Spigler aus

den werschiedenen ‘Jereinen zusammengewdrfel sind |, (Si&@ missen sich daran gewdhnen |, dass gi& nun in einer
— —

hann=chaft " Odbertzer Heide ™ spiglen . Und das heift gemeinszam wund nicht gegeneinander . Bmahnungen won der

Another way to use pointing relations is found in syntactic dependency trees. The queries
in this case can use both pointing relation types and annotation, as in the following query:

pos="VVFIN" & tok & #1 ->dep[func="obja"] #2

This query searches for a finite verb (with the part-of-speech VVFIN) and a token, with a
pointing relation of the type ‘dep’ (for dependency) between the two, annotated with
‘func="obja"’ (the function Object, Accusative). The result can be viewed with the
dependency arch visualizer, which shows the verb gibt ‘gives’ and its object Wunder
‘miracles’.

WYWunder ez immer wwvieder

4.8 Exporting Search Results

By going to the Export tab at the bottom of the search form on the left, you can select one
of several exporters:

Search Export

Exporter: GridExporter o
Context Left: 5 o
Context Right: 5 b
Parameters: kevs=tok,cat,pos

Perform Export

15

The SimpleTextExporter simply gives the text for all tokens in each search result,
including context, in a one-row-per-hit format. The tokens covered by the match area are
marked with square brackets and the results are numbered, as in the following example:

1. Tor zum 1:0 flr die [Ukraine] stirzte der 1,62 Meter groRRe

2. der 1,62 Meter grofle Gennadi [Subow] die deutsche Nationalelf voriibergehend in

3. und Reputation kdmpfenden Mannschaft von [Rudi] Voller der Weg zur Weltmeisterschaft

4. Reputation k&mpfenden Mannschaft von Rudi [VOller] der Weg zur Weltmeisterschaft
endgultig

5. die deutschen Nationalkicker einen " [Rudi] Riese " auf der Bank

The TextExporter adds all annotations of each token separated by slashes (e.g.
dogs/NN/dog for the token dogs annotated with a part-of-speech NN and a lemma
dog).

The GridExporter adds all annotations available for the span of retrieved tokens, with
each annotation layer in a separate line. Annotations are separated by spaces and the
hierarchical order of annotations is lost, though the span of tokens covered by each
annotation may optionally be given in square brackets (to turn this off use the optional
parameter numbers=false). The user can specify annotation layers to be exported in the
additional ‘Parameters’ box, using the setting ‘keys=" and annotation names separated by
comas. If nothing is specified in the parameters box, all available annotations will be
exported. Multiple options are separated by a semicolon, e.g.
keys=tok, pos, cat;numbers=false. An example output with token numbers looks as
follows.

1. tok ein Dialog zwischen den Generationen angestolRen .
cat NP[1-5] S[1-6] VVP[1-6] PP[3-5]
pos ARTI1-1] NN[2-2] APPR[3-3] ART[4-4] NN[5-5] VVPP[6-6] $.[7-7]

Meaning that the annotation cat="NP" applied to tokens 1-5 in the search result, and so
on. Note that when specifying annotation layers, if the reserved name ‘tok’ is not
specified, the tokens themselves will not be exported (annotations only).

The WekaExporter outputs the format used by the WEKA machine learning tool
(http://www.cs.waikato.ac.nz/ml/weka/). Only the attributes of the search elements (#1,
#2 etc. in AQL) are outputted, and are separated by commas. The order and name of the
attributes is declared in the beginning of the export text, as in this example:

@relation name

@attribute #1 id string
@attribute #1 token string
@attribute #1 tiger:cat string
@attribute #2_id string
@attribute #2 token string
@attribute #2 tiger:lemma string
@attribute #2 tiger:morph string
Qattribute #2 tiger:pos string

@Qdata

'288662"', '"NULL', 'NP', '288392"', 'ganze', 'ganz', 'Pos.Acc.Sg.Fem', 'ADJA'
'289175', 'NULL', 'NP', '288712"', 'geladenen', 'geladen', 'Pos.Nom.P1.*', "ADJA'

16

http://www.cs.waikato.ac.nz/ml/weka/

'289660', 'NULL', 'NP', '289409"', 'Doberitzer"', 'Déberitzer', 'Pos.*.* . *', "ADJA'
'288672"', '"NULL', 'NP', '288302"', 'deutschen', 'deutsch', 'Pos.Nom.Pl.Masc', 'ADJA'
'289614', 'NULL', 'NP', '289291"', 'deutsche', '"deutsch', 'Pos.Nom.Sg.Fem', 'ADJA'
'289625', '"NULL', 'NP', '289245"', 'fulminanter', 'fulminant"', 'Pos.Nom.Sg.Masc', 'ADJA'
'288607', "NULL', "NP', '288242"', 'einstige', 'einstig', 'Pos.Nom.Sg.Fem', 'ADJA'
'288620', 'NULL', 'NP', '288334"', 'ahnliche', 'éhnlich', 'Pos.Acc.Pl.Neut', 'ADJA"
'289220', 'NULL', 'NP', '288883"', 'groke', 'groh', 'Pos.Nom.Sg.Fem', 'ADJA'

'288610', "NULL', 'NP', '288313"', '"deutsche', 'deutsch', 'Pos.Acc.Sg.Fem', 'ADJA'
'289174', 'NULL', 'NP', '288809"', 'bose"', 'bose', 'Pos.Nom.Sg.Fem', 'ADJA"

'289611"', 'NULL', "NP', '289241"', 'Dallgower', 'Dallgower', 'Pos.*.*.*', "ADJA"
'288624', 'NULL', 'NP', '288330"', 'ukrainische', 'ukrainisch', 'Pos.Nom.Sg.Masc', 'ADJA"

The export shows the properties of an NP node dominating a token with the part-of-
speech ADJA. Since the token also has other attributes, such as the lemma, the token text
and morphology, these are also retrieved. Note that exporting may be slow in both
exporters if the result set is very large.

17

4.9 Complete List of Operators
The ANNIS Query Language (AQL) currently includes the following operators:

Operator

>*

->LABEL

->LABEL *

Description [Illustration

direct
precedence

indirect

precedence

direct
dominance

indirect
dominance

identical
coverage

inclusion

overlap

left aligned

right aligned

labeled
pointing
relation

indirect
pointing
relation

AB

AxyzB

LABEL

(¥

A B

LABEL LABEL

(¥

A

18

Notes

For non-terminal nodes, precedence is
determined by the right most and left
most terminal children

For specific sizes of precedence
spans, .n,m can be used, e.g. .3,4 -
between 3 and 4 token distance

A specific edge type may be specifed,
€.g.: >secedge to find secondary
edges. Edges labels are specified in
brackets, e.g. >[func="0a"] for an
edge with the function 'object,
accusative'

For specific distance of
dominance, >n, m can be used,
e.g. >3, 4 - dominates with 3 to 4
edges distance

Applies when two annotation cover the
exact same span of tokens

Applies when one annotation covers a
span identical to or larger than
another

For overlap only on the left or right
side, use ol and or respectively

Both elements span an area beginning
with the same token

Both elements span an area ending
with the same token

A labeled, directed relationship
between two elements. Annotations

can be specified with
->LABEL [annotation="VALUE"]

An indirect labeled relationship
between two elements. The length of
the chain may be specified with
->LABEL n,m for relation chains of
length n to m

left-most

~el child

right-most
child

>Qr

Common
parent node

Common
$* ancestor
node

#x:arity=n |Arity

#x:length=n |Length

#x:root Root

X W —
X< —Pp/ x—>P
</

®

19

Specifies the amount of directly
dominated children that the searched
node has

Specifies the length of the span of
tokens covered by the node

node x is the root of a subgraph (i.e. it
is not dominated by any node)

5 Configuring Visualizations

5.1 Triggering Visualizations with the Resolver Table

By default, ANNIS2 displays all search results in the Key Word in Context (KWIC) view
in the search result window. Further visualizations, such as syntax trees or grid views, are
displayed by default based on the following namespaces:

Nodes with the namespace tiger: tree visualizer
Nodes with the namespace exmaralda: grid visualizer
Edges with the namespace mmax: discourse view
Nodes with the namespace external: multimedia player

In these cases the namespaces are usually taken from the source format in which the
corpus was generated, and carried over into relAnnis during the conversion. It is also
possible to use other namespaces, most easily when working with PAULA XML. In
PAULA XML, the namespace is determined by the string prefix before the first period in
the file name / paula_id of each annotation layer. In order to manually determine the
visualizer and the display name for each namespace in each corpus, the resolver table in
the database must be edited. To do so, open PGAdmin (or if you did not install PGAdmin
with ANNIS then via PSQL), and access the table resolver_vis_map (it can be found in
PGAdmin under PostgreSQL 8.4 > Databases > anniskickstart > Schemas > public >
Tables (for ANNIS servers replace “anniskickstart” with “annis_db”). You may need to
give your PostgreSQL password to gain access. Right click on the table and select View
Data > View All Rows. The table should look like this:

. Edit Data - PostgreSQL 8.4 (localhost:5432) - anniskickstart - resolver_vis_map

Ele Edit Wew Tools Help

‘H2n 2 W T |2 ¢ nimt -]

id corpus YEersion namespace |element ¥is_type display_name order mappings
[PK] serial character 5 character var character var character var character var character var numeric character var

1 1 | tiger node tree tree 101
2 exmaralda node grid exmaralda 102
3 3 mma node grid mma 103
4 4 mma edge discourse coref 104
5 5 urml node old_grid urml 105
[[external file external file 106
7 7 paula paula 107
8 g paula_text paula text 108
9 10 b3 parses.1 bitpar nade tree bitpar 1
10 |11 b3 parses.1 lingenia nade tree lingenio 2
11 12 parallel_tree_ tiger-de nade tree Syntax (Gzermar 1
12 13 parallel_tree_ tiger-en node tree Syntax (English) 2
13 |14 b3 parses.1 discourse ‘Whole Text 4
14 |15 SMIULTROM_E german node tree Svntax (Germar 1
15 |16 SMIULTROM_E english node tree Svntax (English) 2
+*

Resolver table (resolver_vis_map)

The columns in the table can be filled out as follows:
- corpus determines the corpora for which the instruction is valid (null values
apply to all corpora)

20

namespace specifies relevant namespace which triggers the visualization

element determines if a node or an edge should carry the relevant annotation for
triggering the visualization
vis_type determines the visualizer module used and is one of:

tree (constituent syntax tree)

16 1
02l
RC
(S}
[S T]
5B 0C HD
CVvP T]
4] cl
L @
HD. HD
[
1 —e—,
[NIK
was EE Dynamik wird

grid (annotation grid, with annotations spanning multiple tokens)

= exmaralda
Select Displayed Annotation Levels -
Focus_newlnf nf-unzol
Inf-Stat acC-gen giv-active
HP MR NP
PP PP exmaralda:Inf-skat = giv-active
sent =
Topic 2 at
tok dlie Ukraine stirzte der 1,62 feter grofe Gennadi Subow

grid_tree (a grid visualizing hierarchical tree annotations as ordered grid
layers; note that all layers represent the same annotation name at different
hierarchical depths, marked level:0,1,2,... etc. on the left)

= topo (grid)

level: 0| TOP

level: 1| WF

level: 2| C MF vC
tok Dai und : wie : Demokratie ;| funktionieren kann

old_grid (deprecated version of grid)
Select Displayed Annotation Levels »
Focus newinfSey nf-unsal nf-unzol
InE-StatSeg acc-gen giv-active acc-gen
NPSeg MP MP exmaralda:Inf-Stat = giv-active
FRSeg PR
ToplcSeg s ak
SentSey 5
die Ukraine stirzte der 1,62 Meter grofe Gennadi Subow die deutsche

21

- discourse (a view of the entire text of a document, possibly with
interactive coreference links. It is possible to use this visualization to view
entire texts even if you do not have coreference annotations)

= coreference (discourse)
Steilpass Wunder gibt es immer wieder | Erst spielen die [Dallgovwer Gemeindevertreter so statisch und verzagt wie die deutsche =

Abwvehrreihe der FulBballkicker . Und dann kommt sus der Tiefe solch ein fulminanter Steilpsss | von dem man hofft | dass [die
Seeburger| oder GroR-Glienicker Mitspieler | ihn sufnehmen kinnen . Ein Befreiungsschlag ist es allerdings nicht | weil es vorerst
keine Gefahr furs |DElGEWer] Tor gab . [Die) Seekurger MNGISHEEREIEENGIEHERER H=ben den Ball erst zurickgespiet und dann um

s0 drangender wieder gefordert | Mun sollen -zeigen L wie -die Chance werwerten . Eine Diskussion | wo kinftig die

Trainerksbine stehen soll | ware in der jetzigen Spielsiustion verheerend . Und eine Parallele |Zu den deutschen Grotten-Kickern

gibt &= immer noch . Auch wenn dig Spielsr aus den verschisdenen “ersinen zusammengeswirfel sind | sie missen sich daran
gewihnen | dass sie nun in einer Mannschaft " Doberitzer Heide " spiglen . Und das heilt gemeinsam und nicht gegeneinander . =

Ermahnungen von der Seitenlinie | miteinander fair umzugehen und sich nicht beim kleinsten Schubser gegenseitig zu zerfleischen

- arch_dependency (dependency tree with labeled arches between tokens;
requires SVG enabled browser, see 5.2)

Wunder ez immer wieder

- ordered_dependency (arrow based dependency visualization for corpora
with dependencies between non terminal nodes; requires GraphViz, see
5.2)

= ordered dependency

Kal iBav -] ‘Inoobg T™HY nioTv adTuy Aéyel ™ napaAvTIKE

22

- hierarchical_dependency (unordered vertical tree of dependent tokens;
requires GraphViz, see 5.2)

= higrarchical dependency

O

pred

sub obl
xadv - X PAAVTIKEG
.
aux

X

/"xsub aux
’
>
iBwv 6 ™w I
obj
aux ‘atr

- graph (a debug view of the annotation graph; requires GraphViz, see 5.2)

ti

tiger.null tiger.edge
tiger:func=MQ/tiger:-func=MO

362

tiger.null
tiger:func=HD,

tiger.null
tiger:func=CC

tiger.edge tiger.edge
tiger:func=CC \tiger:func=HD

tiger.null
tiger:func=HD

tiger.edge
tiger:-func=HD

tiger.null tiger.edge
tiger:func=CD/ tiger:func=CD

tiger.null
tiger:func=C

tiger.edge
tiger:func=CJ

tiger.null tiger.edge
tiger:func=C)/tiger:func=C)

statisch

23

The additional system internal debug views paula and paula_text deliver an
XML representation of hits and entire texts respectively.

- display_name determines the heading that is shown for each visualizer in the
interface

- order determines the order in which visualizers are rendered in the interface
(low to high)

- mappings provides additional parameters for some visualizations:

- tree — the annotation names to be displayed in non terminal nodes can be
set e.g. using node_key:cat for an annotation called cat (the default), and
similarly the edge labels using edge_key:func for an edge label called func
(the default). Instructions are separated using semicolons.

- graph — use ns_ all:true to visualize the entire annotation graph.
Specifying e.g. node_ns:tiger or edge_ns:tiger instead causes only nodes
and edges of the namespace tiger to be visualized (i.e. only a subgraph of
all annotations)

- grid — it is possible to specify the order of annotation layers in each grid.
Use annos: anno_namel, anno_name2, anno_name3 to specify the order
or annotation layers. If anno: is used, additional annotation layers not
present in the list will not be visualized. If mappings is left empty, layers
will be ordered alphabetically

- grid_tree — specify the name of the annotation to be visualized in the grid
with node_key:name. Note that all grid levels visualize the same
annotation name at different hierarchical depths.

- the field version is reserved for future development.

5.2 Visualizations with Software Requirements

Some ANNIS visualizers require additional software, depending on whether or not they
render graphics as an image directly in Java or not. At present, three visualizations
require an installation of the freely available software GraphViz
(http://www.graphviz.org/): ordered_dependency, hierarchical_dependency and the
general graph visualization. To use these, install GraphViz on the server (or your local
machine for Kickstarter) and make sure it is available in your system path (check this by
calling e.g. the program dot on the command line).

Another type of restriction is that some visualizers may use SVG (scalable vector
graphics) instead of images, which mean the user’s browser must be SVG capable (e.g.
FireFox) or a plugin must be used (e.g. for Internet Explorer 8 or below). This is
currently the case for the arch_dependency visualizer.

5.3 Changing maximal context size and possible context steps

The maximal context size of £n tokens from each search result (for the KWIC view, but
also for other visualization) can be set for the ANNIS service in the file

<service-home>/conf/annis-service.properties
Using the syntax, e.g. for a maximum context of 10 tokens:

annis.max-context=10

24

http://www.graphviz.org/

To configure which steps are actually shown in the front-end (up to the maximum
allowed by the service above) and the default context selected on login, configure the file:

<annis-web-home->/javascript/annis/config.js

With the syntax:
var search context = [[0], [1], [2], [5], [10]1;
var search context default = 5;

6 Converting Corpora for ANNIS using SaltNPepper

ANNIS2 uses a relational database format called relANNIS. The Pepper converter
framework allows users to convert data from various formats including PAULA XML,
EXMARaLDA XML, TigerXML, CoNLL, RSTTool and TreeTagger directly into
relAnnis (the Tiger XML conversion is limited to corpora without secondary edges at the
moment). Further formats (including Tiger XML with secondary edges, mmax2) can be
converted first into PAULA XML and then into relANNIS using the converters found on
the ANNIS downloads page.

For complete information on converting corpora with SaltNPepper see:
http://korpling.german.hu-berlin.de/saltnpepper/

25

http://korpling.german.hu-berlin.de/saltnpepper/

	User Guide – Version 2.2.1
	1 Introduction
	2 New Features in Version 2.2.1
	3 Installing ANNIS2
	3.1 Installing a Local Version (ANNIS Kickstarter)
	3.2 Building and Installing an ANNIS Server

	4 Running Queries in ANNIS2
	4.1 The ANNIS2 Interface
	The Search Form
	The Result Window

	4.2 Using the ANNIS2 Query Builder
	4.3 Searching for Word Forms
	4.4 Searching for Annotations
	4.5 Searching using Regular Expressions
	4.6 Searching for Trees
	4.7 Searching for Pointing Relations – Coreference and Dependencies
	4.8 Exporting Search Results
	4.9 Complete List of Operators

	5 Configuring Visualizations
	5.1 Triggering Visualizations with the Resolver Table
	5.2 Visualizations with Software Requirements
	5.3 Changing maximal context size and possible context steps

	6 Converting Corpora for ANNIS using SaltNPepper

